An Efficient Pedestrian Detection Approach Using a Novel Split Function of Hough Forests
نویسندگان
چکیده
In pedestrian detection applications, one of the most popular frameworks that has received extensive attention in recent years is widely known as a ‘Hough forest’ (HF). To improve the accuracy of detection, this paper proposes a novel split function to exploit the statistical information of the training set stored in each node during the construction of the forest. The proposed split function makes the trees in the forest more robust to noise and illumination changes. Moreover, the errors of each stage in the training forest are minimized using a global loss function to support trees to track harder training samples. After having the forest trained, the standard HF detector follows up to search for and localize instances in the image. Experimental results showed that the detection performance of the proposed framework was improved significantly with respect to the standard HF and alternating decision forest (ADF) in some public datasets. Category: Human computing
منابع مشابه
Fast Pedestrian Detection by Cascaded Random Forest with Dominant Orientation Templates
In this paper, we present a new pedestrian detection method combining Random Forest and Dominant Orientation Templates(DOT) to achieve state-of-the-art accuracy and, more importantly, to accelerate run-time speed. DOT can be considered as a binary version of Histogram of Oriented Gradients(HOG) and therefore provides time-efficient properties. However, since discarding magnitude information, it...
متن کاملImproving Hough Based Pedestrian Detection Accuracy by Using Segmentation and Pose Subspaces
The Hough voting framework is a popular approach to parts based pedestrian detection. It works by allowing image features to vote for the positions and scales of pedestrians within a test image. Each vote is cast independently from other votes, which allows for strong occlusion robustness. However this approach can produce false pedestrian detections by accumulating votes inconsistent with each...
متن کاملLatent-Class Hough Forests for 3D Object Detection and Pose Estimation
In this paper we propose a novel framework, Latent-Class Hough Forests, for 3D object detection and pose estimation in heavily cluttered and occluded scenes. Firstly, we adapt the state-of-the-art template matching feature, LINEMOD [14], into a scale-invariant patch descriptor and integrate it into a regression forest using a novel template-based split function. In training, rather than explici...
متن کاملLatent-Class Hough Forests for 6 DoF Object Pose Estimation
In this paper we present Latent-Class Hough Forests, a method for object detection and 6 DoF pose estimation in heavily cluttered and occluded scenarios. We adapt a state of the art template matching feature into a scale-invariant patch descriptor and integrate it into a regression forest using a novel template-based split function. We train with positive samples only and we treat class distrib...
متن کاملMulti-Scale, Categorical Object Detection and Pose Estimation using Hough Forest in RGB-D Images
Autonomous Intelligent Systems Institute for Computer Science Master of Science Multi-Scale, Categorical Object Detection and Pose Estimation using Hough Forest in RGB-D Images by Ishrat Badami Classification and localization of objects enables a robot to plan and execute tasks in unstructured environments. Much work on the detection and pose estimation of objects in the robotics context focuse...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- JCSE
دوره 8 شماره
صفحات -
تاریخ انتشار 2014